METAL SPIRAL STAIR MOUNTING INSTRUCTIONS

PRELIMINARY OPERATIONS

Prior to fitting your staircase, please check the packaging content. You then place all components onto a wide surface in order to assess the quantity of the materials supplied, thus checking it with the table at page nr. 3. Please position properly the landing tread F20-50/60/70 directly onto the brackets F20-305 when the opening is a circular one. If it is a rectangular one, please attach to the landing tread the straight landing tread extension. F20-95/105/115, using the supplied bolts and nuts [Fig. 6].

Determine the proper ground fixing stair position, by using, as a reference, the landing tread [Fig. 7].

POSTS

Please assemble the covering plate with the first post section F20-310 by using the BU-175-ZN screw. Please mark the covering plate holes on the floor; then drill and fix the post into the floor by means of the BU-300-IN screws and the expansion screws BU-305-ZB.

INTERMEDIATE TREADS

Please start the stair assembly by inserting into the post its covering plate F20-310 followed by the components PL-20 and the treads F20-05/15/25 [Fig.9].

In order to assess the correct number of spacers PL20 that determine the chosen riser size, please check the table [Fig.10]. The PL-20 elements will have to be assembled among them as shown in [Fig. 8]. Initially, you place the treads one opposite to the other, so that to balance the stair weight. Follow up with the post mounting by screwing the C20-340 sections needed, by using the BU-195-ZB bar [Fig. 1].

LANDING TREADS

Fix the landing tread F20-50/60/70 by aligning the tread top with the floor. Please use the tubolar spacer C20-320 to position the last post section C20-335 which has to be cut 3 cm away from the landing floor [Fig. 11] and temporarely joined to what is left of the stair; for this operation, please use the long threaded bar BU-200-ZB, and a terminal flange F20-315 [Fig. 1]. Finally, you screw on the BU-200-ZB bar, which will have to protrude by a minimum of 3 cm from the level of the landing floor, the F20-320 component on the side where the nut is welded in, without tightening till the end [Fig.11].

Fix the landing tread F20-50/60/70 by using the wall brackets F20-305 and the bolts and nuts BU-238-IN, BU-210-PL and BU-400-IN [Fig. 3-6].

STAIR RAILING ASSEMBLY

Place the treads F20-05/15/25 by fan rotating them, following the scheme shown in [Fig.12], [Fig. 2-3-4]. Then, you insert the passing through balusters R2-110, starting from the landing tread; in this way you determine the correct rotation of the intermediate treads.

You should then block the passing through balusters R2-110 to the treads with the supplied grub-screw BU-710-IN, level with the bottom of the tread hole. Finish up the stair tightening by acting on the terminal F20-320 and eventually blocking it. Close all the passing through baluster endings with the plastic cap BU-655-PLN and BU-655-PLG [Fig. 2-4]. The intermediate balusters R2-95/101/103/105 are fixed to the treads by means of the elements R2T-215, R2T-260, BU-400-IN and BU-640-IN [Fig. 2-4]. Possibly, adjust the height of the passing through balusters and the intermediate ones inside their holes.

The starting baluster is fixed into the floor by means of a chemical screw BU-215-PL and the element BU-250-ZB [Fig. 2-4].

Place the first anti-skid tape strip F20-625/635//645 level with the holes of the landing tread and the second strip, parallel with the first one. Proceed in the same way for the remaining treads with the anti-skid tape F20-580/590/600 [Fig. 13].

HANDRAIL

Unwind clockwise or counter-clockwise the plastic handrail reel, according to the stair climbing direction [Fig. 14] and fix it to the top of the balusters with the timber screws BU-295-IN. Cut away the exceeding handrail portion and apply the caps FE-05 [Fig. 2-3-15].

LANDING TREAD RAILING

Assemble the balusters and fix them into the landing tread. With the "terminal handrail" PL-25, you cover the steel core terminal. At the top of the PL-25 you place the F20-325 and screw it with the element BU-250-ZB to the wooden core of the landing handrail LE-50-GR. Finally, you fix the balusters to the handrail with the screws BU-295-IN and close the handrail terminal section with the cap FE-05 [Fig. 3].

REINFORCING THE STAIR HANDRAIL

Wherever possible, you can reinforce the stair handrail by connecting it to the wall, as shown in [Fig.15-A]. In this respect, please use the element F20-330 and fix it to one of the passing through balustrades R2-110, which is included between two treads and then you insert it into the element R2-90, properly cut to size.

You then insert the element R2-90 into the element F20-335 and fix it to the wall by means of the BU-165-ZN screw and the expanding one BU-85-PL.

Please use the grub screw BU-108-IN and BU-710-IN to fix the F20-335 and the F20-330 to the element R2-90 and to the passing through baluster R2-110.

BALUSTRADE

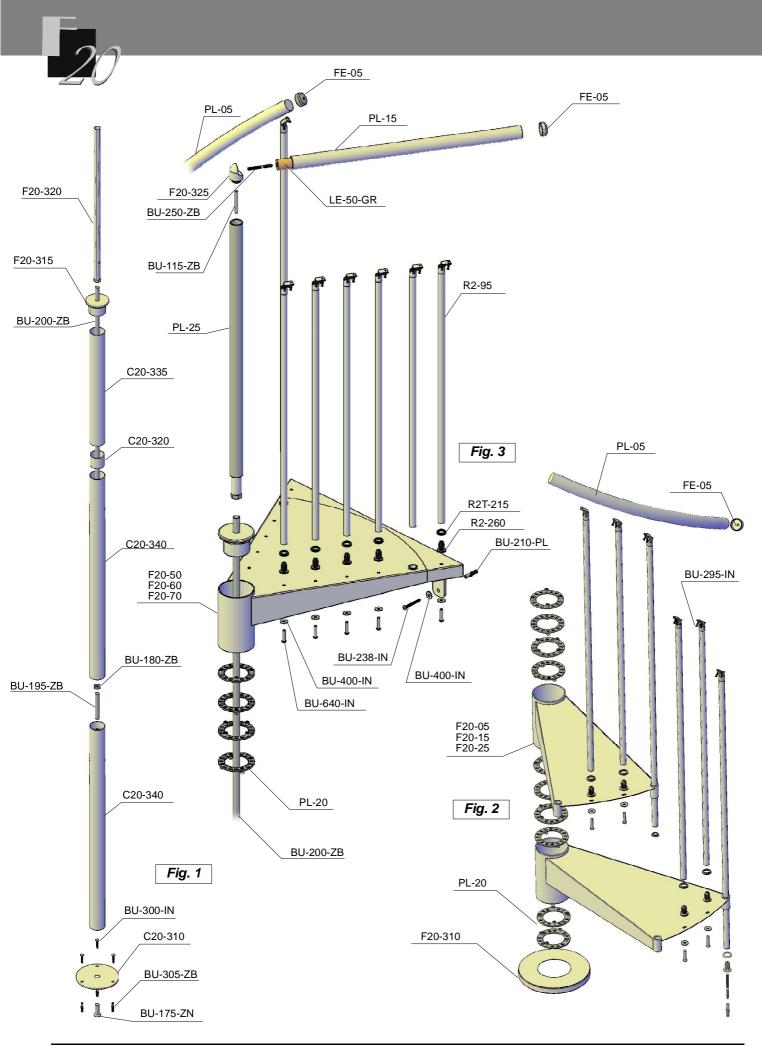
In order to fix the balustrade properly, the balusters should be placed at a distance of 6 cm. from the well edge. The balusters are going to be fixed into the floor as shown in [Fig.18]. You then insert into the balusters the plastic component R2T-215 and R2-260; after having drilled the slab, you then fix the baluster with the espansion screw BU-215-PL and the threaded rod BU-250-ZB. With a rectangular shaped well you insert the wooden core LE-50-GR into the plastic handrail. Fix the balusters to the handrail with the supplied screws BU-295-IN [Fig. 16]. It is possible to connect two sections of the handrail with the connector as shown in [Fig. 16-B]. Alternatively, if the well is circular, you proceed in the same way by using the curved handrail PL-04 [Fig. 17].

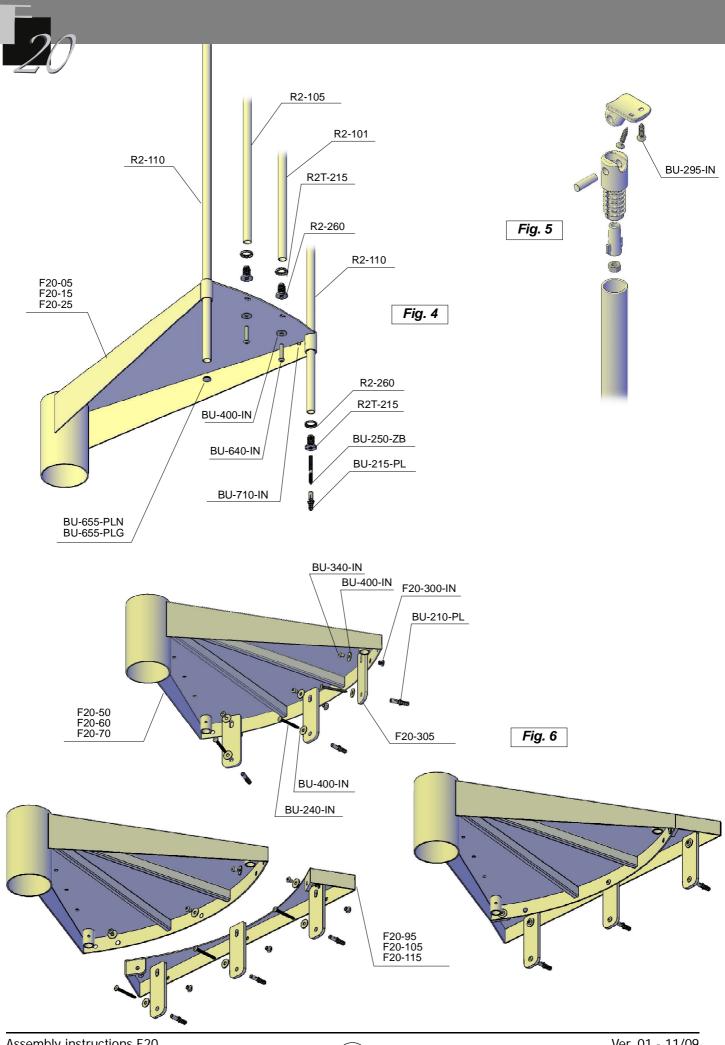
REINFORCING THE BALUSTRADE

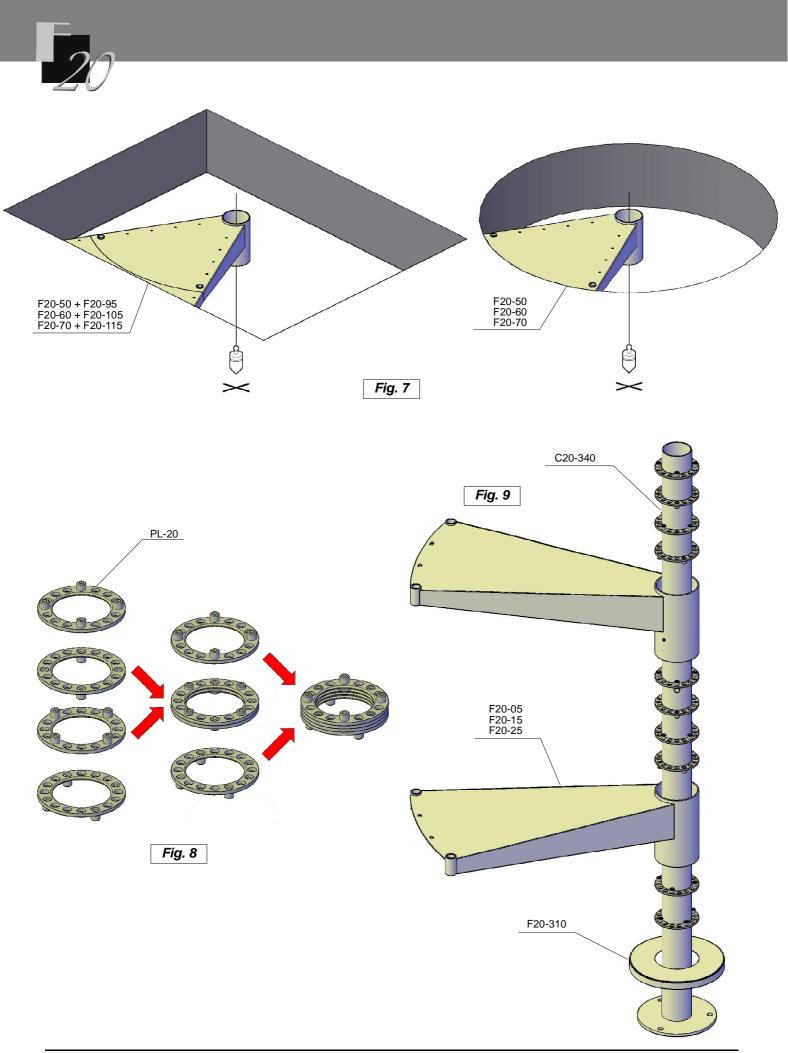
You reinforce the balustrade by using the R2-185 baluster which has to be fixed into the floor by means of the espanding screw BU-85-PI, the screws BU-165 ZN and fixed to the baluster R2-95 with the grub screw BU-705-IN.

You join the balusters of the two perpendicular sections of the balustrade with the baluster reinforcer kit and using the element R2-90, cut to size and some of the elements F20-330, each one of them inserted into a baluster and blocked with some grub-screws BU-705-IN and BU-710-IN [Fig. 16].

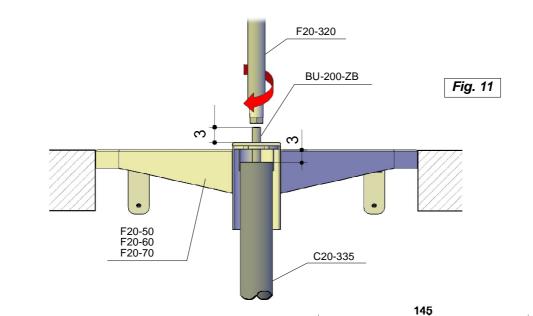
Use the element F20-330 fixed into the baluster R2-95 and connect it to the pipe R2-90, cut to size. Insert the pipe R2-90 into the element F20-335 that can be inserted into the wall by means of the screw BU-165-

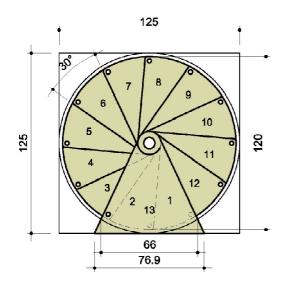

ZN and the chemical screw BU-85-PL.

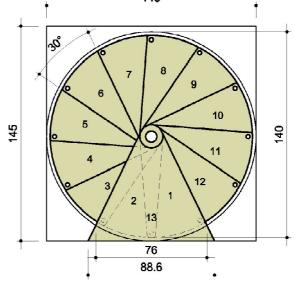

Finally, you use the grub screws BU-705-in and BU-710-IN to fix the F20-335 and F20-330 elements to the pipe R2-90 and to the baluster R2-95.


Note: Areas wich are undercorrosion risk, must be covered with silicon.

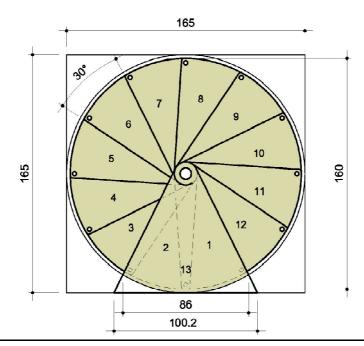
	Ø 120	Ø 140	Ø 160
LE-50-GR	1	1	1
	10		
F20-05	12	0 12	0
F20-15 F20-25	0	0	12
F20-50	1	0	0
F20-60	0	1	0
F20-70	0	0	1
F20-95	1	0	0
F20-105	0	1	0
F20-115 F20-325	0	0	1
FE-05	3	3	3
F20-310	1	1	1
C20-310	1	1	1
F20-305	3	3	3
C20-320	1	1	1
C20-335	1	1	1
C20-340	2	2	2
F20-300-IN F20-315	5	5	5
F20-315 F20-320	1	1	1
F20-330	1	1	1
F20-335	1	1	1
R2-90	1	1	1
R2-95	7	7	7
R2-100	1	1	1
R2-101	0	12	12
R2-103 R2-105	12	0	0
R2-105 R2-110	0 13	12 13	<u>12</u> 13
112-110	15	15	15
BU-175-ZN	1	1	1
BU-180-ZB	2	2	2
BU-195-ZB	1	1	1
BU-200-ZB	1	1	1
BU-340-IN	4	4	4
BU-342-IN	1	1	1
BU-640-IN BU-400-IN	19 28	31 40	<u> </u>
BU-695-ZN	1	1	1
BU-255-ZB	33	45	45
BU-295-IN	66	90	90
BU-115-ZB	1	1	1
BU-710-IN	27	27	27
BU-705-IN	3	3	3
BU-300-IN	3	3	3
BU-305-ZB BU-165-ZB	3	3	3
BU-165-ZB BU-85-PL	1	1	<u> </u>
BU-85-PL BU-210-PL	3	3	3
BU-215-PL	1	1	1
BU-238-IN	3	3	3
BU-250-ZB	2	2	2
CL1-03-PL	33	45	45
CL1-02-PL CL1-01-PL	33 33	45 45	<u>45</u> 45
CL1-01-PL CL1-04-PL	33	45	45
R2-260	20	31	31
R2T-215	2	31	31
PL-05	1	1	1
PL-15	1	1	1
BU-655-PLG/PLN	14	14	14
F20-580	24	0	0
F20-590	0	24	0
F20-600	0	0	24
F20-625 F20-635	2 0	0 2	0
F20-635 F20-645	0	0	2
PL-20	84	84	84
PL-25	1	1	1
F20-1000	1	1	1

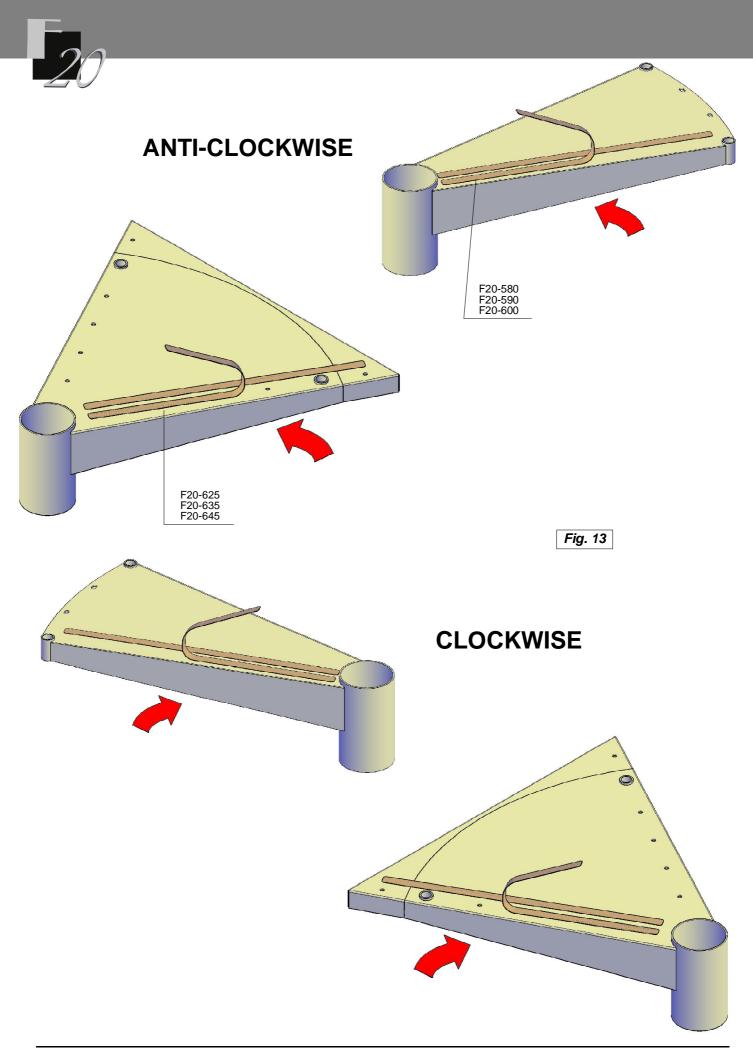

Ver. 01 - 11/09

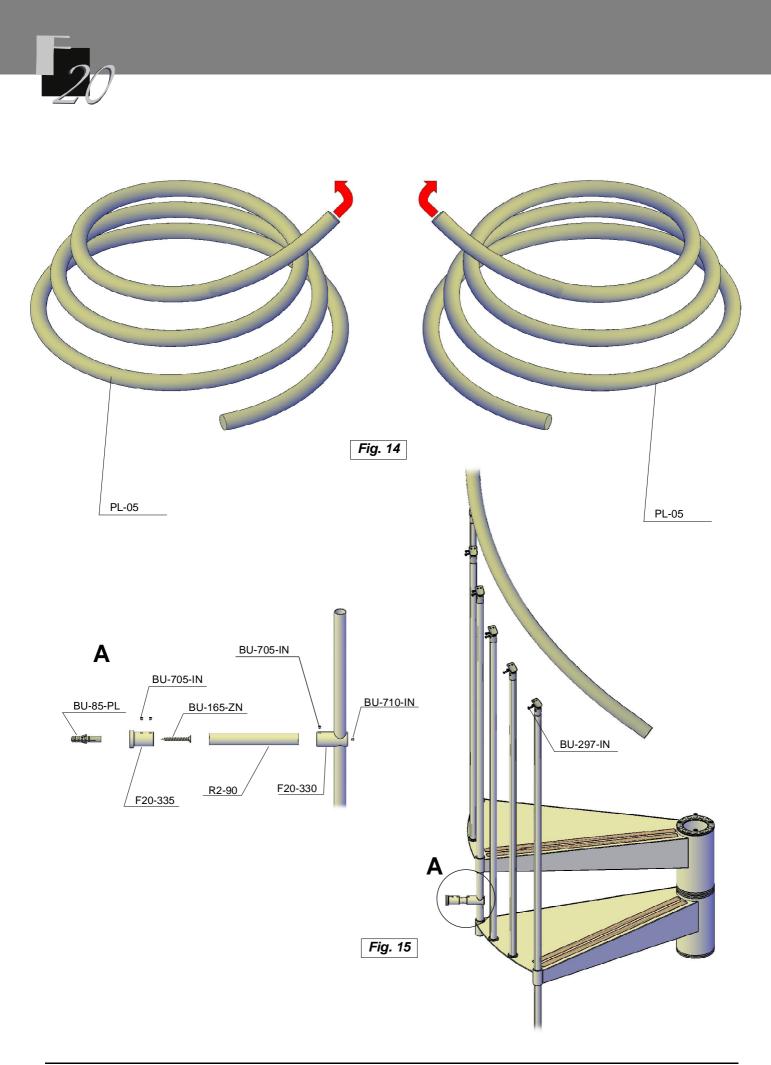


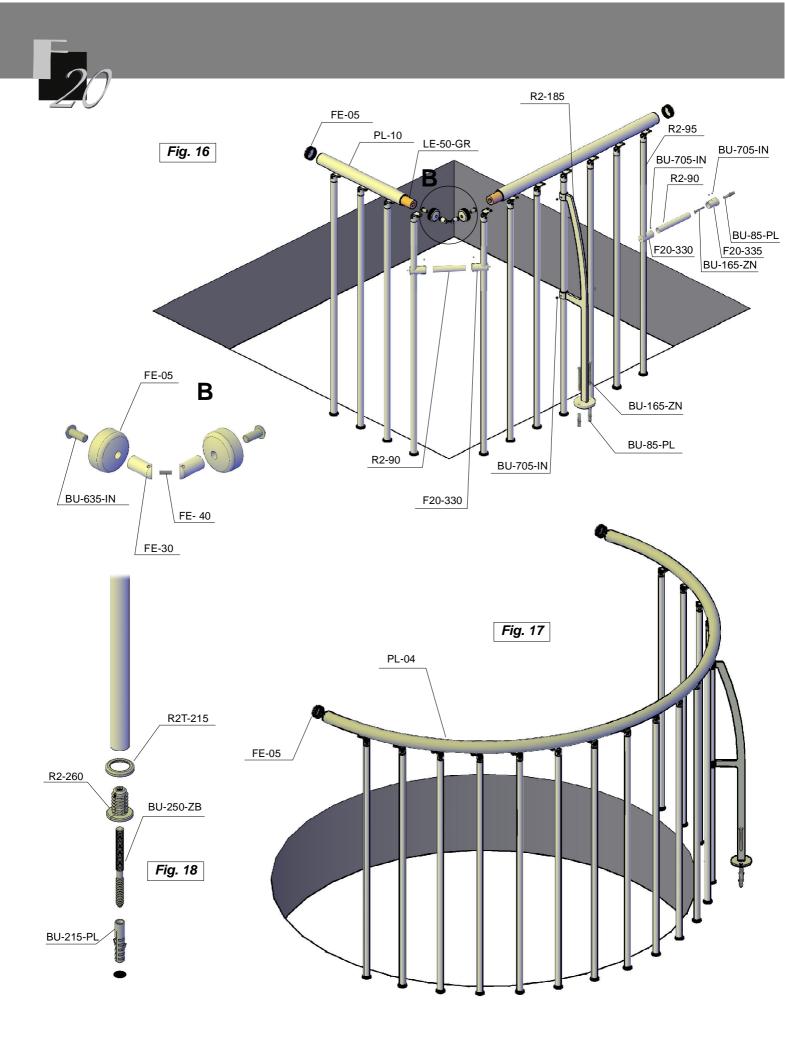

Fig. 10

ne tat	ole ain	iensio	ons ai	e sho	own ir	n cm.											
т.н.	N°.	04 D		RISE	00.5	23.0	Tot. N° of spacers	T.H.	N°.	04.0		RISE	00.0	23.0	Tot. N° of spacers	Alzata = 21	
	Treads		21.5	22.0	22.5	23.0	<u> </u>		Treads	21.0	21.5	22.0	22.5	23.0		2 X	
232.0 233.0	10+1 10+1	10 8	1 3				23 25	312.0 313.0	13+1 13+1			7 5	7 9		63 65	LA Recei	_
234.0	10+1	6	5			-	27	314.0	13+1			3	11		67	1502000	
235.0	10+1	4	7				29	315.0	13+ 1			1	13		69	Sector S	
236.0 237.0	10+1 10+1	2	9 11				31 33	316.0 317.0	13+1 13+1				13 11	1	71 73		
237.0	10+1		9	2		-	35	318.0	13+1				9	5	75		
239.0	10+1		7	4			37	319.0	13+1				7	7	77		
240.0	10+1		5	6			39	320.0	13+1				5	9	79		
241.0 242.0	10+1 10+1	_	3	8 10		-	41 43	321.0 322.0	13+1 13+1				3	11 13	81 83		
243.0	10+1			10	1		45	323.0	14+1		15			1.0	45	Alzata = 21.5	
244.0	10+1			8	3		47	324.0	14+1		13	2			47	15001	
245.0 246.0	10+1 10+1			6 4	6 7		49 51	325.0 326.0	14+1 14+1		11 9	4			49 51	3 X 🌜 🌽	
247.0	10+1			2	9		53	327.0	14+1		7	8			53	SER.	L L L L L L L L L L L L L L L L L L L
248.0	10+1				11		55	328.0	14+1		5	10			55		
249.0	10+1				9	2	57	329.0	14+1		3	12			57	aceres?	
250.0 251.0	10+1 10+1				7	4	59 61	330.0 331.0	14+1 14+1		1	14 14	1		59 61	a series	
252.0	10+1				3	8	63	332.0	14+1			12	3		63	Research and	
253.0	10+1				1	10	65	333.0	14+1			10	5		65		
254.0	11+1	9	3				27	334.0	14+1			8	7		67		
255.0 256.0	11+1 11+1	7	5 7				29 31	335.0 336.0	14+1 14+1			6 4	9 11		69 71		
257.0	11+1	3	9				33	337.0	14+1			2	13		73	Alzata = 22	
258.0	11+1	1	11				35	338.0	14+1				15		75	Alzala - 22	
259.0 260.0	11+1 11+1		11 9	1 3		<u> </u>	37 39	339.0 340.0	14+1 14+1				13 11	2	77 79	4 X	
261.0	11+1		7	5		-	41	341.0	14+1				9	6	81		
262.0	11+1		5	7			43	342.0	14+1				7	8	83	Ser Contraction	
263.0	11+1		3	9			45	343.0	14+1				5	10	85	Recorder.	
264.0 265.0	11+1 11+1		1	11 11	1		47 49	344.0 345.0	14+1 14+1				3	12 14	87 89	20100	
266.0	11+1			9	3	<u> </u>	51	346.0	15+1		13	3			51		4
267.0	11+1			7	5		53	347.0	15+1		11	5			53	00000	
268.0 269.0	11+1 11+1			5	79	<u> </u>	55 57	348.0 349.0	15+1 15+1		9 7	7 9			55 57		
270.0	11+1			1	11		57	350.0	16+1		5	11			57 59		
271.0	11+1				11	1	61	351.0	15+1		3	13			61		
272.0	11+1				9	3	63	352.0	15+1		1	15			63		
273.0 274.0	11+1 11+1				7	5	65 67	353.0 354.0	15+1 15+1			15 13	1 3		65 67	Alzata = 22.5	
275.0	11+1				3	9	69	355.0	15+1			11	5		69	-000x	
276.0	11+1				1	11	71	356.0	15+1			9	7		71	5 X 🤇	
277.0 278.0	12+1 12+1	6 4	7 9			-	33 35	357.0 358.0	15+1 15+1			7 5	9 11		73 75		
279.0	12+1	2	11				37	359.0	15+1			3	13		77		
280.0	12+1		13				39	360.0	15+1			1	15		79	Reser	L L L L L L L L L L L L L L L L L L L
281.0	12+1		11	2		<u> </u>	41	361.0	15+1				15	1	81		H H
282.0 283.0	12+1 12+1		9 7	4 6			43 45	362.0 363.0	15+1 15+1				13 11	3 5	83 85	600000	
264.0	12+1		5	6			47	364.0	15+1				9	7	87	5592F	
285.0	12+1		3	10			49	365.0	15+1				7	9	89		
286.0 287.0	12+1 12+1		1	12 12	1		51 53	366.0 367.0	15+1 15+1				5	11 13	91 93	250000	
288.0	12+1			12	3	1	55	367.0	15+1		<u> </u>		3	15	95		
289.0	12+1			8	5		57	369.0	16+1		11	6			57		
290.0	12+1			6	7		59	370.0	16+1		9	8			59		
291.0 292.0	12+1 12+1			4	9 11	 	61 83	371.0 372.0	16+1 18+1		7	10 12		<u> </u>	61 63		
293.0	12+1				13	1	65	373.0	16+1		3	14			65	Alzata = 23	
294.0	12+1				11	2	67	374.0	16+1		1	16			67	09.000	
295.0	12+1				9	4	69 74	375.0	16+1			16	1		69 71	6 X 🌅	
296.0 297.0	12+1 12+1				7	6 8	71 73	376.0 377.0	16+1 16+1			14 12	3 5		71 73		
298.0	12+1				3	10	75	378.0	16+1			10	7		75	6000	
299.0	12+1				1	12	77	379.0	16+1			8	9		77	Cecci	
300.0	13+1	3	11			 	39 41	380.0	16+1		<u> </u>	6	11		79 81	CONCERCION OF THE OWNER	
301.0 302.0	13+1 13+1	1	13 13	1		-	41 43	381.0 382.0	16+1 16+1			4	13 15	-	81 83	Rener	
303.0	13+1		11	3			45	383.0	16+1				17		85	60300	l l l l l l l l l l l l l l l l l l l
304.0	13+1		9	5			47	384.0	16+ 1				15	2	87		4
305.0	13+1		7	7		<u> </u>	49	385.0	16+1				13	4	89	19802	
306.0 307.0	13+1 13+1		5 3	9 11			51 63	386.0 387.0	16+1 16+1				11 9	6 8	91 93		
308.0	13+1		1	13		1	55	388.0	16+1				7	10	95	(Coos)	
309.0	13+1			13	1	1	57	389.0	10+1				5	12	97		
310.0	13+1			11 9	3		59 61	390.0	16+1				3	14	99	Constraint, Starting	
311.0	13+1							391.0	16+1		1		1	16	101		









Ver. 01 - 11/09

